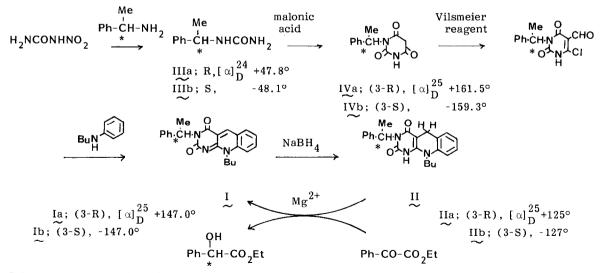
PREPARATION OF CHIRAL 5-DEAZAFLAVIN DERIVATIVES AND THEIR ASYMMETRIC REDUCTION OF ETHYL BENZOYLFORMATE


Kiyoshi Tanaka, Tomoya Okada and Fumio Yoneda* Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Tomohisa Nagamatsu and Kazunori Kuroda Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan

Summary: 1,5-Dihydro-5-deazaflavin derivatives possessing a chiral substituent at N(3) position were synthesized, with which moderate asymmetric induction was observed in the reduction of ethyl benzoylformate.

In recent years, 5-deazaflavin derivatives (e.g. coenzyme $F_{420}^{(1)}$) have been given much attention because of their significant role in redox reaction of biological systems. We have previously reported that 1,5-dihydropyrimido[4,5-b]-quinoline-2,4[3H,10H]-dione (1,5-dihydro-5-deazaflavin), which is a model of 1,5-dihydroflavin nucleotide as well as NADH, reduced simple carbonyl compounds to yield the corresponding alcohols under the acidic condition²). The stereoselective nonenzymatic reductions of carbonyl group by modified 1-benzyl-1,4dihydronicotinamide (BNAH) with chiral substituents at 1,3,4 or 5 positions as a model for NAD(P)H have been extensively investigated and remarkable results so far reported by many groups³.

We, in this communication, wish to report the synthesis of the chiral 5-deazaflavin derivatives (Ia,b),(IIa,b) and their use in asymmetric reduction of ethyl benzoylformate in the presence of magnesium perchlorate.

Scheme I. Preparation of the chiral 5-deazaflavins (Ia,b) and the reduction of ethyl benzoylformate.

Synthesis of the 5-deazaflavin derivatives (Ia,b) was undertaken by the method shown in Scheme I. Thus, starting from nitrourea and $R^{-(+)}$ - or S-(-)- α -phenylethylamine, 3-R-(+)and 3-S-(-)- α -phenylethylbarbituric acids (IVa,b)⁴) were obtained in 65-75 % yield. Construction of the 5-deazaflavin skeleton⁵) was achieved by the treatment of IVa,b with Vilsmeier reagent followed by successive treatment of N-butylaniline in DMF to afford ia and Ib⁶) in 40-50 % yield respectively. The 5-deazaflavins (Ia,b) were converted to the corresponding 1,5-dihydro derivatives (IIa,b)⁶ by the reduction with sodium borohydride in ethanol quantitatively.

The reduction of ethyl benzoylformate with equimolar amount of 1,5-dihydro-5-deazaflavins (IIa,b) was carried out in the presence of magnesium perchlorate (1 eq.) in a mixture of acetonitrile and acetic acid (1:1) at room temperature for 7 days under atmosphere of argon in the dark. Ethyl mandelate was obtained in moderate chemical⁷⁾ and optical yield together with recovered benzoylformate and 5-deazaflavins (Ia,b). These results are summarized in Table I.

1,5-dihydro-5-deazaflavin	ethyl mandelate (product)			
	chemical ^{a)} yield (%)	configuration	[α] _D ^{20 b)}	optical ^{c)} yield (%)
IIa X	12	S	+14.2°	14
IIb	15	R	-21.8°	21

Table I. Asymmetric reduction of ethyl benzoylformate.

This is a first example of the synthesis of the chiral 5-deazaflavin derivatives having redox potential and use in enantioselective reduction. This synthesis described above also opens the way to the synthesis of the 5-deazaflavin derivatives bearing a variety of substituents at N(3) position. Synthesis of another type of the chiral 5-deazaflavins and their application for asymmetric reducing agent are under progress.

REFERENCES AND NOTES

- 1) D. Eirich, G. D. Vogels and R. S. Wolfe, Biochemistry, 17, 4583 (1978).
- 2) F. Yoneda, Y. Sakuma and Y. Nitta, Chem. Lett., 1177 (1978).
- 3) For example; J. G. de Vries and R. M. Kellogg, J. Am. Chem. Soc., 101, 2759 (1979); A. Ohno,
 M. Ikeguchi, T. Kimura and S. Oka, *ibid.*, 101, 7036 (1979); T. Endo, H. Kawasaki and
 M. Okawara, Tetrahedron Lett., 23, (1979); T. Makino, T Nunozawa, N. Baba, J. Oda and
 Y. Inouye, J. Chem. Soc., Perkin Trans. I, 7 (1980).
- 4) All new compounds were fully characterized spectroscopically and by combustion.
- 5) F. Yoneda, Y. Sakuma, S. Mizumoto and R. Ito, J. Chem. Soc., Perkin Trans. 1, 1085 (1976).
- 6) Ia: mp 114-116° C. IR (CHCl₃) 1695, 1640, 1617, 1568 and 1532 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz) ⁶ 1.02 (3H, t, J = 8 Hz), 1.94 (3H, d, J = 7 Hz), 4.72 (2H, bt), 6.40 (1H, q, J = 7 Hz), 7.15-7.90 (9H,m), 8.78 (1H,s). Ib: mp 114- 116° C. IIa: mp 83-84° C. IR (CHCl₃) 3430, 1690 and 1620 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz) ⁶ 0.87 (3H, t, J = 8 Hz), 1.90 (3H, d, J = 7 Hz), 3.66 (2H, m), 3.77 (2H, s), 6.34 (1H, q, J = 7 Hz), 6.82-7.42 (9H, m), MS m/z: 394 (M⁺). IIb: mp 85° C.
- 7) Since 1,5-dihydro derivatives (IIa,b) are extremely sensitive to atmospheric oxygen which regenerates 5-deazaflavins (Ia,b), exact chemical yield could not be determined.
 (Received in Japan 26 January 1984)